Control Examples

Notes – examples 1&2 on pages 55-58

Example 1: How to use Routh-Hurwitz

- The characteristic equation of a system is:
- $2s^3 + 4s^2$
- Is the system stable or unstable? If it is unstable, how many roots lie in the right half of the s-plane?
- 1st Criterion: Are all of the coefficients $a_0, a_1, ..., a_n$ non-zero?
- Do they have the same sign?
- The answer is yes: on to criterion 2

\mathcal{L} Example 1

• Creating the Routh Array for: $2s^3 + 4s^2 + 4s - 12 = 0$

\sim		

Ш Example 1

• Creating the Routh Array for: $2s^3 + 4s^2 + 4s + 12 = 0$

Ш Example 1

• Creating the Routh Array for: $2s^3 + 4s^2 + 4s + 12 = 0$

Example 1

• Creating the Routh Array for: $2s^3 + 4s^2 + 4s + 12 = 0$

• Two sign changes in the left column: system is unstable with two positive roots

Example 2: Adventures in stability

• A 'Three term controller' has the following Transfer Function:

$$
\frac{\theta_c(s)}{\theta_{\varepsilon}(s)} = 20 \left[1 + T_D s + \frac{1}{T_i s} \right]
$$

- Where T_p = Derivative time and T_i = Integral time or Reset Time.
- This controller is used to control a process with Transfer Function:

$$
\frac{\theta_0(s)}{\theta_c(s)} = \frac{4}{[s^2 + 8s + 80]}
$$

- Unity feedback is used.
- If integral action is NOT employed, find the value of T_p required to give a closed loop damping ratio of unity.

Block Diagram

Ш **THILL Block Diagram** $\theta_i(s)$ + $\theta_0(s)$ $G1(s)$ $\left|\right|$ $G2(s)$ −

•
$$
G1(s) = 20 \left[T_D s + 1 + \frac{1}{T_I s} \right]
$$

•
$$
G2(s) = \frac{4}{[s^2 + 8s + 80]}
$$

•
$$
\theta_0(s) = (\theta_i - \theta_0)G1(s)G2(s)
$$

•
$$
\theta_0(s)(1+G1(s)G2(s)) = \theta_i(s)G1(s)G2(s)
$$

$$
\bullet \frac{\theta_0(s)}{\theta_i(s)} = \frac{G1(s)G2(s)}{1+G1(s)G2(s)} = \frac{\left[1+T_D s + \frac{1}{T_i s}\right] \frac{80}{(s^2+8s+80)}}{1+\left[1+T_D s + \frac{1}{T_i s}\right] \frac{80}{(s^2+8s+80)}} = \frac{80\left[1+T_D s + \frac{1}{T_i s}\right]}{(s^2+8s+80)+80\left[1+T_D s + \frac{1}{T_i s}\right]}
$$

• If integral action is NOT employed, find the value of T_D required to give a closed loop damping ratio of unity.

$$
\frac{\theta_0(s)}{\theta_i(s)} = \frac{80[1 + T_D s]}{(s^2 + 8s + 80) + 80[1 + T_D s]}
$$

• Only the denominator is of concern here:

•
$$
s^2 + (8 + 80T_D)s + 160 = s^2 + 2\gamma\omega s + \omega^2
$$

- \bullet ω^2
- $\gamma = 1$ $2\omega s = 8\sqrt{10} = 8 + 80T_D$

•
$$
T_D = \frac{8\sqrt{10}-8}{80} = \frac{\sqrt{10}-1}{10} = 0.216s
$$

• If this value of T_D is used, determine the minimum value of T_i that can be used if the system is to remain stable.

$$
\frac{\theta_0(s)}{\theta_i(s)} = \frac{80\left[1 + 0.216s + \frac{1}{T_i s}\right]}{(s^2 + 8s + 80) + 80\left[1 + 0.216s + \frac{1}{T_i s}\right]}
$$

• Denominator (characteristic equation) is given by:

•
$$
s^2 + (8 + 80 \times 0.216)s + 160 + \frac{80}{T_i s} = 0
$$

- $s^3 + 25.28s^2 + 160s + 80$ $T_{\boldsymbol{i}}$
- Time to use Routh-Hurwitz

Ш 77 T T

- $s^3 + 25.28s^2 + 160s + 80$ T_{i}
- Time to use Routh-Hurwitz

$$
b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1} = \frac{25.28 \times 160 - \frac{80}{T_i}}{25.28} = 160 - \frac{3.165}{T_i}
$$

- For Stability: No change of sign in column 1.
- $80T_i = 0$ $T_i > 0$
- $160 3.165/T_i > 0$ i.e. $T_i > 0.01978$
- If T_i < 0 then there is one root in the right half of the s-plane
- If $0 < T_i < 0.01978$ then there are two roots in the right half of the s-plane

- When the values of T_D and T_i calculated above are employed, determine the nature of the transient response of the system to an arbitrary input.
- Characteristic equation is now:

•
$$
s^3 + 25.28s^2 + 160s + \frac{80}{0.01978} = s^3 + 25.28s^2 + 160s + 4044.49 = 0
$$

- At the margin of stability, this will have two imaginary roots and one real root:
- $s^3 + 25.28s^2 + 160s + 4044.49 = (s + \alpha)(s^2 + \omega^2) = s^3 + \alpha s^2 + \omega^2 s + \alpha \omega^2$
- $\alpha = 25.28$
- $\omega = \sqrt{160} = 4\sqrt{10} = 12.65$

Visualisation of root locus

System response to a step input:

